P1-12A, P1-13A, P1-19, P1-19/1, P1-20, P1-21

ТЕХНИЧЕСКОЕ ОПИСАНИЕ
И ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ
ГВО.274.010 ТО
СОДЕРЖАНИЕ

1. ТЕХНИЧЕСКОЕ ОПИСАНИЕ

1.1 Назначение ... 5
1.2 Состав комплекта ... 5
1.3 Технические характеристики .. 7
1.4 Конструкция ... 9
1.5 Принцип действия .. 13

2. ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ

2.1 Общие указания .. 14
2.1.1 Повторная упаковка ... 14
2.1.2 Приведение линии в состояние готовности к эксплуатации 14
2.2 Указания по работе .. 15
2.2.1 Расположение органов управления 15
2.2.2 Подготовка к измерениям 15
2.2.3 Методика определения верхнего предела квадратичности характеристики детектора 17
2.2.4 Методика градуировки детектора 18
2.2.5 Измерение коэффициента стоячей волны (K_{ст} U) 19
2.2.6 Измерение K_{ст} U четырехполюсников 23
2.2.7 Измерение длины волны в волноводе 25
2.2.8 Измерение сдвига фазы коэффициента отражения 25
2.2.9 Измерение полного сопротивления 26
2.2.10 Измерение степени согласования генераторов 27
2.2.11 Измерение ослабления .. 29
2.2.12 Оценка погрешности измерения K_{ст} U и фазы коэффициен-
та отражения ... 29
2.2.13 Определение погрешности измерения K_{ст} U 32
2.2.14 Определение затухания измерительной линии 32
2.3 Профилактические работы ... 33
2.4 Указания по ремонту ... 33
2.4.1 Смена детектора .. 33
2.4.2 Порядок разборки прибора 33
2.4.3 Замена противопылевой шторки и зондовой головки 34
2.4.4 Ремонт волновода ... 35

3. УКАЗАНИЯ ПО ПОВЕРКЕ

3.1 Введение ... 36
3.2 Операции и средства поверки 36
3.3 Условия поверки и подготовка к ней 37
3.4 Проведение поверки .. 38
3.5 Оформление результатов поверки 45

4. ПРАВИЛА ХРАНЕНИЯ .. 45

Приложение 1. Карточка отзыва потребителя 47
Рис. 1 Общий вид прибора
1. ТЕХНИЧЕСКОЕ ОПИСАНИЕ

1.1. НАЗНАЧЕНИЕ

1.1.1. Линии измерительные типа Р1-12А, Р1-13А, Р1-19, Р1-19/1, Р1-20, Р1-21 предназначены для измерения коэффициента стоячей волны по напряжению \(K_{ctv} \) в диапазонах рабочих частот волноводных трактов следующих сечений:

- Р1-12А — 7,2×3,4 мм, 37,5—25,86 ГГц
- Р1-13А — 11×5,5 мм, 25,86—17,44 ГГц
- Р1-19 — 16×8 мм, 17,44—12,05 ГГц
- Р1-19/1 — 17×8 мм, 16,66—11,55 ГГц
- Р1-20 — 23×10 мм, 12,05—8,24 ГГц
- Р1-21 — 28,5×12,6 мм, 9,93—6,85 ГГц

1.1.2. По погрешности измерения \(K_{ctv} \) линии относятся ко 2 классу ГОСТ 11294-74.

1.1.3. По условиям эксплуатации линии относятся к 5 группе нормали Н0.005.026.

1.1.4. Линии могут использоваться для измерения модуля и фазы коэффициента отражения четырехполюсников и двухполюсников, определения согласования генераторов, измерения длины волны в волноводе, а также измерения ослаблений волноводных четырехполюсников.

1.1.5. Линии измерительные типа Р1-12А, Р1-13А, Р1-19, Р1-19/1, Р1-20, Р1-21 предназначены для совместной работы с измерительными усилителями типа В8-6, У2-6, У2-4.

1.2. СОСТАВ КОМПЛЕКТА

<table>
<thead>
<tr>
<th>Наименование</th>
<th>Количество</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ящик укладочный</td>
<td>Р1-12А</td>
</tr>
<tr>
<td>Линия измерительная</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Наименование</th>
<th>P1-12A</th>
<th>P1-13A</th>
<th>P1-19</th>
<th>P1-19/1</th>
<th>P1-20</th>
<th>P1-21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Сопротивление реактивное волноводное</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>СРВ-12А</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>СРВ-13А</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>СРВ-19</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>СРВ 19/1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>СРВ-20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>СРВ-21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Переход Э2-118</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Болт установочный БУ-3</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Болт установочный БУ-4</td>
<td></td>
<td></td>
<td>8</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Болт М3×16</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Болт М4×20</td>
<td></td>
<td>8</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Болт М3×14 32.038</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Шайба 4 32.036</td>
<td></td>
<td>16</td>
<td>16</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Шайба 3 32.036</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Шайба 3 65Г029</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Гайка М3 32.036</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Гайка М3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Гайка М4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Штифт</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>16</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Струбцина</td>
<td>8</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Ключ 7811-0002С1Кд21хр ГОСТ 2839 71</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Крышка</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Заглушка</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Продолжение табл. 1

<table>
<thead>
<tr>
<th>Наименование</th>
<th>Количество</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P1-12A</td>
</tr>
<tr>
<td>Диод полупроводниковый:</td>
<td></td>
</tr>
<tr>
<td>Д607</td>
<td>3*</td>
</tr>
<tr>
<td>Д608</td>
<td>—</td>
</tr>
<tr>
<td>Д608А</td>
<td>—</td>
</tr>
<tr>
<td>Коробка</td>
<td>2</td>
</tr>
<tr>
<td>Кабель</td>
<td>1</td>
</tr>
<tr>
<td>Кабель</td>
<td>1</td>
</tr>
<tr>
<td>Брошюра (Техническое описание</td>
<td>1</td>
</tr>
<tr>
<td>и инструкция по эксплуатации)</td>
<td></td>
</tr>
<tr>
<td>Брошюра (Паспорт)</td>
<td>1</td>
</tr>
</tbody>
</table>

* для приборов, поставляемых по спец. заказу

1. 3. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

1. 3. 1. Собственный K_{CTU} линии не более 1,02.

1. 3. 2. Непостоянство связи зонда с полем линии не более 1,4%.

1. 3. 3. Относительная шунтирующая проводимость зонда не более 0,015.

1. 3. 4. Погрешность отсчета положения зонда:

 | P1-12A, P1-19, P1-19/1 | 0,01 мм |
 | P1-13A | 0,014 мм |
 | P1-20 | 0,016 мм |
 | P1-21 | 0,02 мм |

1. 3. 5. Затухание СВЧ-мощности в волноводе линий P1-12A и P1-13A не превышает значений:
1. 3. 6. Направленность поля в 32-118 (сечения 17×8 на сечение 16×8 мм) не более 1,02.

1. 3. 7. Линия предназначена для эксплуатации в лабораторных, цеховых и других соответствующих им условиях, при этом:
— температура окружающей среды для рабочего состояния должна быть от 278 до 313 К (от 5 до 40°С);
— температура окружающей среды для нерабочего состояния должна быть от 223 до 333 К (от минус 50 до +60°С);
— относительная влажность воздуха до 95% при температуре 303 К (30°С).

1. 3. 8. Предельные значения параметров линий на уровне середины фланцев:
— высота минимальная 80 мм,
— высота максимальная 160 мм.

1. 3. 9. Длина перемещения каретки линии не менее:

<table>
<thead>
<tr>
<th>Линии</th>
<th>Длина перемещения каретки</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1-12A</td>
<td>15 мм</td>
</tr>
<tr>
<td>P1-13A</td>
<td>22 мм</td>
</tr>
<tr>
<td>P1-19</td>
<td>31 мм</td>
</tr>
<tr>
<td>P1-19/1</td>
<td>31 мм</td>
</tr>
<tr>
<td>P1-20</td>
<td>44 мм</td>
</tr>
<tr>
<td>P1-21</td>
<td>52 мм</td>
</tr>
</tbody>
</table>

1. 3. 10. Оптимальная глубина погружения зонда:

<table>
<thead>
<tr>
<th>Линии</th>
<th>Глубина погружения зонда</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1-12A</td>
<td>0,4 мм</td>
</tr>
<tr>
<td>P1-13A</td>
<td>0,6 мм</td>
</tr>
<tr>
<td>P1-19</td>
<td>0,8 мм</td>
</tr>
<tr>
<td>P1-19/1</td>
<td>0,8 мм</td>
</tr>
<tr>
<td>P1-20</td>
<td>1,0 мм</td>
</tr>
<tr>
<td>P1-21</td>
<td>1,3 мм</td>
</tr>
</tbody>
</table>

1. 3. 11. Длина перемещения поршня сопротивления реактивного не менее 200° по фазе коэффициента отражения, что составляет:

<table>
<thead>
<tr>
<th>Линии</th>
<th>Длина перемещения поршня</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1-12A</td>
<td>12 мм</td>
</tr>
<tr>
<td>P1-13A</td>
<td>17 мм</td>
</tr>
<tr>
<td>P1-19</td>
<td>25 мм</td>
</tr>
<tr>
<td>P1-19/1</td>
<td>25 мм</td>
</tr>
<tr>
<td>P1-20</td>
<td>34 мм</td>
</tr>
<tr>
<td>P1-21</td>
<td>38 мм</td>
</tr>
</tbody>
</table>

1. 3. 12. Габариты линий с опущенным подъемным механизмом:

<table>
<thead>
<tr>
<th>Линии</th>
<th>Габариты</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1-12A</td>
<td>214×176×136 мм</td>
</tr>
<tr>
<td>P1-13A</td>
<td>214×176×136 мм</td>
</tr>
<tr>
<td>P1-19</td>
<td>214×176×136 мм</td>
</tr>
<tr>
<td>P1-19/1</td>
<td>214×176×136 мм</td>
</tr>
<tr>
<td>P1-20</td>
<td>214×176×147 мм</td>
</tr>
<tr>
<td>P1-21</td>
<td>214×176×155 мм</td>
</tr>
</tbody>
</table>

1. 3. 13. Габариты укладочного ящика:

<table>
<thead>
<tr>
<th>Ящика</th>
<th>Габариты</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1-19</td>
<td>265×310×248 мм</td>
</tr>
<tr>
<td>P1-19/1</td>
<td>257×310×248 мм</td>
</tr>
<tr>
<td>P1-12A</td>
<td>214×176×136 мм</td>
</tr>
<tr>
<td>P1-13A</td>
<td>214×176×136 мм</td>
</tr>
<tr>
<td>P1-20</td>
<td>214×176×147 мм</td>
</tr>
<tr>
<td>P1-21</td>
<td>214×176×155 мм</td>
</tr>
</tbody>
</table>
1. 3. 14. Масса линии:

<table>
<thead>
<tr>
<th>Номер линии</th>
<th>Масса, кг</th>
</tr>
</thead>
<tbody>
<tr>
<td>Р1-12А</td>
<td>2,1</td>
</tr>
<tr>
<td>Р1-13А</td>
<td>2,1</td>
</tr>
<tr>
<td>Р1-19</td>
<td>2,2</td>
</tr>
<tr>
<td>Р1-19 I</td>
<td>2,2</td>
</tr>
<tr>
<td>Р1-20</td>
<td>2,4</td>
</tr>
<tr>
<td>Р1-21</td>
<td>2,5</td>
</tr>
<tr>
<td>РМЗЛ</td>
<td>6,5</td>
</tr>
<tr>
<td>Р1-19</td>
<td>7,5</td>
</tr>
<tr>
<td>Р1-20</td>
<td>8,2</td>
</tr>
<tr>
<td>Р1-21</td>
<td>8,5</td>
</tr>
</tbody>
</table>

1. 3. 15. Максимальная допустимая мощность на входе линии при оптимальном погружении зонда 100 мВт.

1. 3. 16. Чувствительность линии обеспечивает измерение $K_{сг.в.т.}=2$ при чувствительности усилителя 1 мкВ, мощности генератора 1 мВт и оптимальном погружении зонда.

1. 4. КОНСТРУКЦИЯ

Конструкция прибора представлена на рисунках 2, 3. Канал волновода (1), оканчивающийся фланцами, помещается в корпус (2), представляющий собой литую деталь с фрезерованными посадочными местами для волновода и отсчетно-перемещающего механизма. Корпус линии с установленными в него волноводом (1) с кареткой (4) и отсчетно-перемещающим механизмом (3) закрывается крышкой (5). Перемещение каретки (4) осуществляется винтовым механизмом (3). В качестве направляющей для каретки (4), на которой крепится зондовая головка (6), служит стальная пластина (9), нижняя поверхность которой, наращенная серебром, является одновременно верхней стенкой волновода (1). В этой пластине электроэррозионным способом выжигается щель связи, затем гальванопластическим методом наращивается основной канал волновода.

Так как ширина пластины (9) больше ширины канала (1), то эта поверхность является направляющей, что позволяет получить одинаковое погружение зонда по всей длине хода каретки.

Каретка (4) выполнена в виде двух корытообразных кронштейнов, охватывающих направляющую (9). Для выборки люфтов между кареткой и волноводом в каретке предусмотрено крепление консольных пружин (8) с шарикоподшипниками. Каретка имеет паз, в который входит выступ гайки механизма перемещения.

Перемещение каретки осуществляется винтовым механизмом (7). Винтовой механизм (микровинт с гайкой) представляет собой винтовую пару с ходом винтовой линии 1 мм. Механизм (рис. 2) устанавливается в корпусе на двух шарикоподшипниках (10), установленных в «распор» со стороны от...
счетного лимба (12), а вторым концом — в скользящем подшипнике на противоположной стороне корпуса линии. К винту крепится лимб (12) с нониусом, позволяющим отсчитывать перемещение каретки с точностью порядка 0,005 мм. Этот же лимб служит для плавного перемещения каретки линии. Конструкцией предусмотрена возможность отдельной сборки и регулировки винтового механизма, а при сборке — простое закрепление его тремя винтами (11) к корпусу.

В винтовом механизме предусмотрена выборка люфта между ходовой гайкой и кареткой.

Собранная линия (рис. 3) устанавливается на верхней плате (12) подъемного механизма (10), состоящего из двух шар-
Рис. 3. Поперечный разрез линии измерительной
нирных четырехзвенников (параллелограммов) и винтового привода. Регулировка высоты линии производится ручкой (11). Для выборки неровностей стола служат винты (13).

Ускоренное перемещение каретки осуществляется ручкой (14), расположенной с левой стороны корпуса линии (рис. 3). Механизм ускоренного перемещения состоит из двух конических шестерен с передаточным отношением 1:1,72.

Зондовая головка (рис. 4) выполнена в виде бикоаксиального контура, настраиваемого при помощи двух поршней (1) и (2). Штырь (3), являющийся продолжением зонда, и внут-
ренняя поверхность средней трубы (4) образуют контур зонда, который настраивается посредством перемещения внутреннего поршня (2). Внешняя поверхность средней трубы (4) и внутренняя поверхность внешней трубы (5), служащей корпусом головки, образуют контур детектора. Длина этого контура также может изменяться перемещением наружного поршня (1). Конструкция головки позволяет плавно перемещать внутренний и наружный поршни с помощью гаек (6) и (7), выступающих в вырезах корпуса.

Глубина погружения зонда регулируется с помощью лимба (8), имеющего отсчетное устройство в пределах от 0 до 3 мм. Детектор устанавливается в детектородержателе (9). Для изоляции детектора служит втулка (10). Контакт детектора с коаксиальным контуrom обеспечивается с помощью контакта (11).

1. 5. ПРИНЦИП ДЕЙСТВИЯ

Принцип работы измерительной линии основан на исследовании картины поля стоячей волны с помощью зонда, пропущенного через щель во внутреннюю полость волновода. Зонд связан с настраиваемой измерительной детекторной головкой. Головка укреплена на каретке, перемещаемой вдоль волновода.

Зонд обеспечивает слабую связь с электрическим полем в волноводе. Ток наведенной ЭДС пропорционален напряженности электрического поля в месте расположения зонда. После выпрямления детектором ток поступает в цепь индикатора.

Тщательная настройка з sondовой головки на максимальную чувствительность позволяет компенсировать реактивную составляющую проводимости зонда, влияющую на форму поля в волноводе, и уменьшить погрешность фазовых измерений, одновременно повышая общую чувствительность линий. Перемещение зонда вдоль линии позволяет определить положение максимумов и минимумов напряженности поля в линии и их относительные величины.
2. ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ

2. 1. Повторная упаковка.

По окончании работы с измерительной линией ее следует помещать в укладочный ящик. Укладочный ящик предусмотрен для хранения всего комплекта поставки линии.

Перед укладкой линии следует надеть на фланцы крышки и установить минимальную высоту подъемного механизма.

Зондовая головка линии при помощи механизма перемещения устанавливается в среднее положение. При помощи механизма погружения устанавливается минимальная глубина погружения зонда (на «0» шкалы).

Затем линия укладывается в ящик и при помощи деревянной планки и стяжных гаек закрепляется в укладочном месте. Реактивное сопротивление с надетой на фланец крышки, а также коробки с детекторами, крепежными и калибровочными болтами укладываются в места для них предназначенные.

2. 1.2. Приведение линии в состояние готовности к эксплуатации.

Измерительные линии имеют механизмы высокой степени точности, сохранение которой в процессе эксплуатации всецело зависит от аккуратности и соблюдения правил эксплуатации обслуживающим персоналом.

Зондовая головка не предназначена для перемещения линии с места на место или извлечения ее из укладочного ящика. При переносе линии удерживайте ее за корпус или механизм вертикального перемещения.

Фланцы измерительной линии не предназначены для удерживания на весу приборов, \(K_{ct} \) у которых вы собираетесь измерить. Подсоединяйте фланцы измеряемых волноводов к линии, только убедившись в их параллельности к фланцам линии и в том, что они находятся на одинаковой высоте с фланцами линии. Устанавливайте измеряемые волноводы и приборы на устойчивых подставках.

Случайные удары могут ввести измерительную линию из строя или ухудшить ее параметры. Во избежание случайных повреждений, а также запыления, в периоды длительных пере...
рывов между измерениями помещайте ее в укладочный ящик. При кратковременных перерывах в работе надевайте крышки на фланцы и накрываете линию защитным чехлом.

Для приведения линии в состояние готовности к эксплуатации следует вынуть ее из укладочного ящика и установить соответствующую данному типу линии глубину погружения зонда.

2. 2. УКАЗАНИЯ ПО РАБОТЕ

2. 2. 1. Расположение органов управления.

Для перемещения каретки линия снабжена двумя ручками перестройки. Ручка (14, рис. 3) ускоренного перемещения каретки находится на лицевой стороне корпуса. Ручка (12, рис. 2) плавного перемещения находится на правой боковой стороне корпуса и имеет деления от 1 до 100. Эта ручка одновременно является лимбом отсчетного механизма перемещения зонда вдоль линии.

Положение зонда определяется по сумме показаний отсчетной линейки на крышке линии, имеющей деления через 1 мм, и отсчетного лимба (12, рис. 2), имеющего деления через 0,01 мм. При производстве двух и более последовательных отсчетов положения зонда отсчеты следует производить при подходе к отсчитываемому положению с одной и той же стороны.

Для настройки зондовой головки (рис. 4) служат две выступающие из радиальных пазов гайки (6 и 7) с накаткой. Настройка контура зонда производится верхней гайкой (7), настройка контура детектора производится нижней гайкой (6).

Глубина погружения зонда регулируется при помощи лимба (8) с делениями, находящегося в верхней части зондовой головки.

2. 2. 2. Подготовка к измерениям.

а) Вынуть прибор из ящика.

б) С помощью ручки регулировки высоты установить канал на нужной высоте.

в) К одному фланцу линии через развязывающий высокочастотный аттенюатор подсоединить СВЧ-генератор.

Включение в тракт развязывающего аттенюатора, если он отсутствует в схеме генератора, обязательно. Линия обеспечивает точность измерения лишь при наличии развязывающего аттенюатора с ослаблением 10—15 дБ, с Kт < 1 не более 1,3.

г) К другому фланцу присоединить испытуемый волноводный тракт.

Все высокочастотные соединения должны быть выполнены весьма тщательно и при обязательном использовании калибровочных болтов или штифтов. Несоблюдение этих мер приводит
к возникновению дополнительных отражений и потерь в тракте, способствующих увеличению общей погрешности измерения.

d) Подключить кабель от измерительного усилителя к штучеру низкочастотного разъема зондовой головки линии.

Перед подключением измерительного усилителя к линии, во избежание повреждения детектора, следует убедиться в том, что корпус генератора и корпус усилителя заземлены.

Если используется генератор немодулированных колебаний, в качестве индикаторного прибора может быть использован микроамперметр постоянного тока класса 1,0, например, М-95, но при этом следует иметь в виду, что квадратичность детектора удовлетворительна при токах, не превышающих 10 микроампер.

c) Включить генератор и установить необходимую глубину погружения зонда. Выбор глубины погружения зонда зависит от мощности колебаний в тракте, чувствительности применяемого индикаторного устройства, чувствительности детектора, а также от метода проводимых измерений. Следует помнить, что глубина погружения зонда большая, чем оптимальная, приводит к увеличению погрешности за счет шунтирующего действия. Оптимальная глубина погружения указана в п. 1.3.10 ТО.

ж) По максимуму показаний индикатора настроить в резонанс контур зонда, пользуясь верхней настроенной гайкой зондовой головки, затем при помощи нижней гайки настроить на резонанс детекторный контур зондовой головки. Настраойку контуров следует повторить до получения максимума показаний индикатора, при этом настройку проводить по наибольшему максимуму.

Может оказаться, что зонд линии находится в минимуме напряженности поля стоячей волны, вследствие чего невозможно обнаружить какой-либо сигнал. Тогда следует сместить каретку и настроить зондовую головку до получения резонанса.

э) Развязывающим аттенюатором ввести такое затухание, чтобы показания индикатора не превышали уровня, до которого еще сохраняется квадратичность характеристики детектора. Ориентировочно детекторная характеристика квадратична при выходных напряжениях, не превышающих 0,001 В при $R_{нагд} = 500 \div 1000$ Ом.

Если работа детектора происходит в режиме, не обеспечивающем квадратичности характеристики, то необходимо в результате измерений K_{ct} вносить поправки. Методика определения верхнего предела квадратичности характеристики детектора и методика определения характеристики детектора даны в пунктах 2. 2. 3 и 2. 2. 4 ТО.
Для того, чтобы были обеспечены условия квадратичности характеристики детектора, измерения $K_{ст у}$ следует, по возможности, проводить при максимальной чувствительности измерительного усилителя. Кроме того, при работе с усилителем типа В8-6 рекомендуется использовать встроенный в усилитель источник смещения рабочей точки детектора.

Работу прибора следует считать нормальной, если:

а) при передвижении зонда вдоль линии наблюдаются максимумы, отличающиеся между собой не более чем на 2,8%;

б) отсутствует нестабильность показаний индикатора при неподвижном зонде.

2. 2. 3. Методика определения верхнего предела квадратичности характеристики детектора.

Определение верхнего предела квадратичности производится по блок-схеме, рис. 5, измерением одного и того же ослабления на различных уровнях мощности, подводимой к детектору.

Уровень мощности, при котором начинается измерение, устанавливается развязывающим аттенюатором (2), при этом показание a_1 индикаторного прибора измерительного усилителя при подсоединении к измерительной линии короткозамыкателем (6) и положении входного делителя усилителя X_1 должны быть в пределах 80—90 делений. При этом зонд линии (3) должен быть установлен в максимум напряженности поля стоячей волны.

Затем вместо короткозамыкателя к линии (3) подсоединяется согласованная нагрузка (5) и отмечаются показания a_2 измерительного усилителя (4).

Рис. 5.

1. Генератор сигналов.
2. Развязывающий аттенюатор.
3. Измерительная линия.
4. Измерительный усилитель.
5. Согласованная нагрузка.
6. Короткозамыкатель (заглушка).
Делитель измерительного усилителя переключается в положение Х10, при помощи развязывающего аттенюатора стрелка индикатора усилителя устанавливается в положение а2. Вместо согласованной нагрузки (5) к измерительной линии (3) снова подключается короткозамыкатель (6) и отмечается показание индикатора усилителя а1.

Если разница отсчетов а1 и а1 не превышает 0,5 деления, го детектор при измерении отношений напряжений до 10, что соответствует измеряемому Когт = 3.16, имеет квадратичную характеристику, при этом дополнительная погрешность измерения Когт не превышает 0,5%.

Характеристика детектора может быть проверена при помощи измерительного аттенюатора, включенного в цепь между развязывающим аттенюатором (2) и измерительной линией (3). В этом случае линия постоянно нагружается согласованной нагрузкой, а перепад мощности 3 дБ на разных уровнях мощности вводится измерительным аттенюатором.

2.2.4. Методика градуировки детектора.

Характеристика детектора может быть определена снятием характеристик напряженности поля короткозамкнутой измерительной линии. Измерение проводится по блок-схеме, рис. 5.

К измерительной линии (3) подключается короткозамыкатель (6). Зонд линии устанавливается в положение, соответствующее минимальному показанию индикатора усилителя. Положение минимума определяется методом «вилки» следующим образом: зонд линии устанавливается в положение, близкое к минимуму; отмечаются показания индикатора а1 и производится отсчет по шкале механизма перемещения l1; затем зонд перемещается по другую сторону минимума до отсчета по шкале индикатора а1 и производится отсчет по шкале механизма перемещения l2. Положение минимума l0 определяется по формуле:

$$l_0 = \frac{l_1 + l_2}{2}. \quad (1)$$

Характеристика детектора определяется методом измерения напряженности поля в линии при помощи индикатора измерительного усилия в 10—12 положениях зонда l1 вдоль линии от минимума напряженности поля, соответствующего положению зонда l0, до максимума, соответствующего максимальному показанию индикатора усилителя амакс. Записываются показания индикатора усилителя а1 а2 амакс для соответствующих положений зонда l1, l2 l0.

Для каждого положения зонда l1 вычисляется относительное значение напряжения стоячей волны по формуле:

$$U = a_{\text{max}} \sin \frac{2\pi l_1}{l_g}, \quad (2)$$
где \(l \) — расстояние зонда от положения зонда в минимуме;

\(\lambda_g \) — длина волны в волноводе;

\(a_{\text{max}} \) — показания индикатора усилителя в максимуме напряженности поля.

В таблице 2 даны расчетные нормированные значения напряженности поля на расстоянии вдоль линии от минимума до максимума через 0,025 \(l/\lambda_g \).

<table>
<thead>
<tr>
<th>(l/\lambda_g)</th>
<th>0,0</th>
<th>0,025</th>
<th>0,05</th>
<th>0,075</th>
<th>0,1</th>
<th>0,125</th>
<th>0,15</th>
<th>0,175</th>
<th>0,2</th>
<th>0,225</th>
<th>0,25</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U)</td>
<td>0</td>
<td>0,156</td>
<td>0,309</td>
<td>0,454</td>
<td>0,588</td>
<td>0,707</td>
<td>0,809</td>
<td>0,891</td>
<td>0,951</td>
<td>0,988</td>
<td>1,00</td>
</tr>
</tbody>
</table>

По результатам измерения и расчета строится график, где по горизонтальной оси откладываются расчетные величины напряжения, а по вертикальной оси — соответствующие показания измерительного усилителя \(a_{\text{изм}} \). Методика пользования графиком заключается в определении расчетного значения напряжения, величины которого и используются при расчете \(K_{\text{ст}} v \) по формуле:

\[
K_{\text{ст}} v = \frac{U_{\text{max}}}{U_{\text{min}}} \quad (3)
\]

Следует иметь в виду, что полученная градуировочная кривая детектора справедлива только при условии сохранения того же уровня мощности, при котором производилась градуировка и при неизменной чувствительности индикаторного устройства.

Пример построения графика калибровки детектора дан на рис. 6.

2. 2. 5. Измерение коэффициента стоячей волны (\(K_{\text{ст}} v \)). Измерение \(K_{\text{ст}} v \) методом максимума-минимума проводится по блок-схеме, рис. 7.

Методика измерения \(K_{\text{ст}} v \) заключается в следующем.

а) Перемещая зондовую головку вдоль линии, установить зонд в пучность стоячей волны и зафиксировать величину максимума показаний индикатора (\(U_{\text{max}} \)).

б) Перемещая зондовую головку, установить зонд в узел стоячей волны и зафиксировать величину минимума (\(U_{\text{min}} \)).

В общем случае \(K_{\text{ст}} v = \frac{U_{\text{max}}}{U_{\text{min}}} \). (4)

в) Предполагая, что характеристика детектора квадратична, определить коэффициент стоячей волны по формуле:

\[
K_{\text{ст}} v = \sqrt{\frac{U_{\text{max}}}{U_{\text{min}}}}. \quad (5)
\]

П р и м е ч а н и е. Удовлетворительная квадратичность детектора обычно получается при напряжениях, снимаемых с детектора, не превышающих одинц милливольт (или токах детектора, не превышающих 10 микроампер).
1. Генератор сигналов.
2. Развязывающий аттенюатор.
3. Измерительная линия.
4. Измерительный усилитель
5. Измеряемая нагрузка

Рис. 6 Пример построения градуировочной кривой детектора

Рис. 7
При измерениях больших $K_{ст}u$ динамический диапазон измерительного прибора может не обеспечивать измерение отношений требуемых величин. В этом случае измерение проводится методом замещения по блок-схеме, рис. 8.

Метод измерения заключается в следующем.

Перемещая зондовую головку вдоль линии, по индикатору усилителя определяем минимум. Стрелка индикатора при помощи развязывающего аттенюатора или изменением усиления усилителя устанавливается во вторую половину шкалы индикатора. Измерительный аттенюатор при этом должен быть установлен на «0» ослабления.

Положение стрелки индикатора (A) записывается или запоминается. Затем зонд линии перемещается в максимум напряженности поля стоячей волны (следить, чтобы стрелка индикатора не зашкаливалась!) и при помощи измерительного аттенюатора устанавливается в положение А. По шкале измерительного аттенюатора отчитывается отношение в децибелах. $K_{ст}u$ вычисляется по формуле:

$$K_{ст}u = 10^\frac{p}{10},$$

где p — отношение в децибелах между максимумом и минимумом.

Данный метод позволяет мерить как малые (порядка 1,05), так и большие (порядка 100) значения $K_{ст}u$. Погрешность за счет неквадратичности детектора при измерении $K_{ст}u$ данным методом отсутствует, т. к. измерение максимума и минимума производится при неизменной мощности СВЧ, поступающей на детектор. Данный метод не пригоден для измерения $K_{ст}u$ детекторных и смесительных головок и других устройств, $K_{ст}u$ которых зависит от уровня мощности в тракте. При использовании калиброванного делителя усилителя для измерения отношения $\frac{U_{макс}}{U_{мин}}$, следует полностью придерживаться методики измерения, рекомендуемой инструкцией по эксплуатации применяемого усилителя.
Для измерения значений $K_{ct} > 2$ при отсутствии измерительного аттенюатора или недостаточной чувствительности при оптимальном погружении зонда используется метод удвоенного минимума. При измерении методом удвоенного минимума, если чувствительность индикаторного устройства недостаточна для четкого наблюдения минимума, можно увеличить глубину погружения зонда, так как погрешность за счет шунтирующего действия зонда и неквадратичность характеристики детектора при данном методе в общую погрешность измерения не входят. Измерение производится следующим образом.

а) Определить расстояние d между двумя положениями зонда по обе стороны от минимума (U_{min}), в которых показания индикатора в два раза больше показаний индикатора в минимуме ($2U_{min}$). Отсчет по лимбу механизма отсчета производится при подходе к точкам $2U_{min}$ с одной и той же стороны.

Рис. 9. Измерение большого K_{ct} методом удвоенного минимума.

б) Измерить длину волны в волноводе λ_g или вычислить ее по формуле:

$$\lambda_g = \frac{\lambda_0}{\sqrt{1 - \left(\frac{\lambda_0}{\lambda_{kr}}\right)^2}}$$

где λ_0 — длина волны в свободном пространстве;
λ_{kr} — критическая длина волны в волноводе.

в) Вычислить K_{ct} по формуле:

$$K_{ct} = \sqrt{1 + \frac{1}{\sin^2\frac{\pi d}{\lambda_g}}}$$
При $\frac{\pi d}{\lambda_g} < 0,12$ можно с ошибкой менее 1% последнюю формулу заменить следующей более простой формулой:

$$K_{ct} = \frac{\lambda_g}{\pi d}, \quad (9)$$

Если уровень мощности недостаточен для четкого наблюдения минимума U_{min} и минимум находится ниже уровня шумов U_{sh} детектора и усилителя (рис. 10) измерение K_{ct} происходит следующим образом.

![Измерение большого K_{ct} при малых уровнях мощности](image1)

Выбирают уровень напряжения U_1 по какую-либо сторону от минимума, несколько превышающий уровень шумов. На этом уровне при помощи механизма отсчета положения зонда замеряется расстояние d_1 между точками, имеющими уровень U_1.

Затем на уровне $2U_1$, вдвое превышающем уровень первого измерения, замеряется расстояние d_2. K_{ct} определяется по формуле:

$$K_{ct} = \sqrt{1 + \frac{\lambda_g^2}{\pi^2 (d_2^2 - 2d_1^2)}} \quad (10)$$

Формула справедлива при значениях $\frac{d_2}{\lambda_g}$ и $\frac{d_1}{\lambda_g}$, не превышающих 0,1 при измерении $K_{ct} > 10$.

2. 2. 6. Измерение K_{ct} четырехполюсников.

Измерение K_{ct} четырехполюсников производится по блок-схеме, рис. 11.

Измерение K_{ct} происходит методом «максимум-минимум» с помощью подвижной согласованной нагрузки, обеспе
чивающей перемещение поглощающего элемента на расстояние не менее 0,6 λ_g. Критерием годности нагрузки является постоянство модуля коэффициента отражения (Γ) нагрузки при перемещении, которое при измерении малых (порядка 1,05) $K_{ct}\nu$ должно сохраняться с погрешностью $\delta \Gamma \leq 0,003$.

Для измерения $K_{ct}\nu$ четырехполюсников можно применить нагрузки с $K_{ct}\nu$ от значений близких к 1—1,4.

Порядок измерений следующий. Поглотитель нагрузки следует установить в любое крайнее положение и измерить $K_{ct}\nu$ методом «максимум-минимум». Затем поглотитель нагрузки перемещают на расстояние приблизительно равное $\lambda_g/20$ и снова определяют $K_{ct}\nu$ нагрузки. Достаточно провести 12—14 измерений, т. е. сместить нагрузку на расстояние порядка 0,6 λ_g. Из ряда измеренных $K_{ct}\nu$ надо выбрать максимальное и минимальное значения.

Если $K_{ct}\nu$ измеряемого четырехполюсника больше чем $K_{ct}\nu$ нагрузки, то расчет проводится по формуле:

$$K_{ct}\nu = \sqrt{K_{max} \cdot K_{min}} - (11)$$

где K_{max} и K_{min} — максимальное и минимальное значения $K_{ct}\nu$ из полученного ряда измерений.

Если $K_{ct}\nu$ четырехполюсника меньше чем $K_{ct}\nu$ нагрузки, то подсчет производится по формуле:

$$K_{ct}\nu = 1 + \frac{K_{max} - K_{min}}{K_{max} + K_{min}} - (12)$$

или по формуле:

$$K_{ct}\nu = \sqrt{\frac{K_{max}}{K_{min}}} - (13)$$

При измерениях $K_{ct}\nu$ четырехполюсников с помощью подвижной нагрузки следите, чтобы $K_{ct}\nu$ нагрузки всегда значительно отличался от $K_{ct}\nu$ четырехполюсника.

Метод менее трудоемкий заключается в использовании неподвижной нагрузки, согласованной на частоте измерения при
помощи трансформатора полных сопротивлений до $K_{ct} u \geq 1,03$. Нагрузка вместе с трансформатором полных сопротивлений подсоединяется к измеряемому четырехполюснику и производится измерение $K_{ct} u$ методом «максимум-минимум». После изменения частоты нагрузку необходимо снова согласовать. Нагрузку можно не согласовывать, если на частоте измерения ее $K_{ct} u \leq 1,03$.

2. 2. 7. Измерение длины волны в волноводе.

Измерение проводится по блок-схеме, рис. 7.

К измерительной линии подсоединяется короткозамыкатель и устанавливается развязка, обеспечивающая отсутствие реакции короткозамыкателя на частоту генератора.

Длину волны в волноводе определяют путем измерений расстояния между двумя соседними минимумами стоячей волны, которое равно 0,5 λ_g.

Определяется положение L_0 минимума, ближайшего к какому-либо краю линии. Положение минимума для повышения точности измерения определяется методом вилки. Для этого зонд линии немного сдвигается с минимума и определяется его положение l_1 по механизму отсчета линии и показание A_n по шкале индикатора усилителя. Затем зонд линии смещается через минимум до положения, соответствующего прежней величине отсчета A_n по шкале индикатора усилителя и отмечается положение зонда l_2. Положение минимума $L_0= 0,5 (l_1+l_2)$.

Таким же методом определяется положение ближайшего к L_0 минимума L_n. При определении положения минимумов отсчеты по механизму перемещения следует проводить при подходе к точкам отсчета с одной стороны.

Длина волны в волноводе (λ_g) определяется по формуле:

$$\lambda_g = 2 (L_0 - L_n).$$

(14)

2. 2. 8. Измерение сдвига фазы коэффициента отражения.

Измерение сдвига фазы производится по блок-схеме, рис. 11. Измеряемое устройство, например, фазовращатель, подсоединяется к измерительной линии и нагружается короткозамыкателем (заглушкой). Ослабление развязывающего аттенюатора должно обеспечить устранение влияния короткозамыкателя на параметры генератора.

Методом вилки (п 2. 2. 7) определяется положение минимума (L_0). После введения некоторого сдвига фазы, величину которого требуется измерить, происходит смещение минимума в сторону генератора или в сторону нагрузки от начального положения (L_0). Определяется новое положение минимума (L_n). Сдвиг фазы ($\Delta \phi$) подсчитывается по формуле:

$$\Delta \phi = \frac{(L_0-L_n) \cdot 360^\circ}{\lambda_g}.$$
Знак сдвига фазы определяется по направлению смещения минимума. Если минимум смещается в сторону генератора, сдвиг фазы имеет отрицательное значение \((-\Delta \phi^\circ)\), если в сторону нагрузки — положительное значение \((+\Delta \phi^\circ)\).

Особое внимание при измерении сдвига фазы следует обратить на стабильность частоты генератора, так как нестабильность частоты при измерении сдвига фазы в длинных грунтах приводит к значительной погрешности. Для уменьшения погрешности рекомендуется отсчеты при определении положения минимумов \((L_0 \text{ и } L_n)\) проводить при одинаковых значениях частоты и при отсчетах положения минимума подстраивать частоту, пользуясь органами управления генератора.

2.2.9. Измерение полного сопротивления.

Измерение полного сопротивления четырехполюсников производится по блок-схеме, рис. 11, а двухполюсников — по блок-схеме, рис. 7.

Требования к величине развязки те же, как и при измерении \(K_{ct} \nu\). Так как от \(K_{ct} \nu\) нагрузки зависит погрешность измерения, то при измерении полного сопротивления четырехполюсников нагрузка должна иметь \(K_{ct} \nu\) порядка 1,02-1,03. Если такая нагрузка отсутствует, следует имеющуюся нагрузку согласовать на частоте измерения при помощи трансформатора полных сопротивлений до требуемого значения \(K_{ct} \nu\). Затем следует провести следующие измерения.

а) Определить условный конец измерительной линии. Для этой цели измерительная линия закорачивается подвижным короткозамыкателем со стороны нагрузки. Зондовой головкой перемещают от выходного конца линии по направлению к генератору до первого узла стоячей волны. Эта точка и будет условным концом линии.

При изменении частоты необходимо вновь определить условный конец линии.

б) Присоединить к выходному фланцу линии испытуемую нагрузку или четырехполюсник, нагруженный на согласованную нагрузку.

в) Определить расстояние \(L\) от условного конца линии до первого минимума в сторону генератора.

г) Вычислить угол разности фаз:

\[
v = 2\pi \frac{L}{\lambda_g}, \quad (16)
\]

где \(\lambda_g\) — длина волны в волноводе, которую можно вычислить по формуле 7 или измерить путем определения расстояния между двумя соседними минимумами стоячей волны, которое равно \(\frac{1}{2} \lambda_g\).
д) Измерить $K_{ct\,v}$ согласно п. 2. 2. 5.
e) Полное сопротивление нагрузки $Z_h = R - jX$ вычисляется по соотношению:

$$Z_h = Z_0 \frac{1 - j K_{ct\,v} \tan \theta}{K_{ct\,v} - j \tan \theta} \tag{17}$$

приведенному к виду

$$R = Z_0 \frac{K_{ct\,v} (1 + g^2 \tan^2 \theta)}{K_{ct\,v}^2 + g^2 \tan^2 \theta}, \tag{18}$$

$$X = Z_0 \frac{(K_{ct\,v}^2 - 1) \tan \theta}{K_{ct\,v}^2 + g^2 \tan^2 \theta}, \tag{19}$$

где Z_0 — волновое сопротивление линии: $Z_0 = \frac{2b}{a} \cdot 120 \pi \frac{\lambda_0}{\lambda_0}$, где a и b — соответственно широкая и узкая стороны волновода;

λ_0 — длина волны в свободном пространстве.

Для вычисления полного сопротивления вместо указанных формул можно пользоваться диаграммой Вольтерта.

Из значения измеряемого $K_{ct\,v}$ и расстояния до первого минимума можно определить коэффициент отражения, который вычисляется по формуле:

$$|\Gamma| = \frac{K - 1}{K + 1}, \tag{20}$$

и его фазу, которая определяется формулой:

$$\Psi = \pi - \pi. \tag{21}$$

Отсюда

$$\Gamma = |\Gamma| e^{j\Psi}. \tag{22}$$

Примечание. Коэффициент отражения связан с полным сопротивлением или полной проводимостью нагрузки формулами:

$$\Gamma = \frac{Z - Z_0}{Z + Z_0} = \frac{Y - Y_0}{Y_0 + Y}. \tag{23}$$

Надежные результаты в определении полного сопротивления или коэффициента отражения могут быть получены при $K_{ct\,v} > 1.3$.

При малых $K_{ct\,v}$ определение фазы становится неточным.

2. 2. 10. Измерение степени согласования генераторов.
a) Присоединить к линии подвижный короткозамыкатель.
b) Перемещая короткозамыкатель и каретку линии в том же направлении, определяют максимальную $U_{n_{max}}$ и минимальную $U_{n_{min}}$, амплитуды напряженности поля в пучностях стоячей волны по показанию индикатора.

в) По формуле:

$$K_{ct\,v} = \sqrt{\frac{U_{n_{max}}}{U_{n_{min}}}}. \tag{24}$$

Определяется $K_{ct\,v}$ выхода генератора. Измерение $K_{ct\,v}$ генератора можно производить только в случае отсутствия из-
Рис. 12. График зависимости $K_{ст, У}$ от ослабления
менения мощности и частоты генератора при перемещении короткозамыкающего поршня.

2. 2. 11. Измерение ослабления.

Для измерения ослабления четырехполюсник, нагруженный короткозамыкателем, подсоединяется к измерительной линии и замеряется его $K_{ct} \cdot v$ (K_1). Затем замеряется $K_{ct} \cdot u$ короткозамыкателя (K_2). Потери четырехполюсника (a) подсчитываются по формуле:

$$a = 10 \log \frac{(K_1+1)(K_2-1)}{(K_1-1)(K_2+1)}. \quad (25)$$

Указанным методом можно измерить малые (порядка 0,05-0,5 дБ) значения ослаблений. При измерении средних (порядка 5-10 дБ) значений ослаблений можно говорить лишь об ориентировочном определении ослаблений, так как за счет собственного $K_{ct} \cdot v$ четырехполюсника общая погрешность измерения становится слишком большой.

Для ориентировочного определения ослабления можно воспользоваться графиком, рис. 12, в котором дана зависимость изменения различных значений $K_{ct} \cdot u$ нагрузки от введенного ослабления.

2. 2. 12. Оценка погрешности измерения $K_{ct} \cdot u$ и фазы коэффициента отражения.

Формулы для расчета составляющих погрешностей измерения $K_{ct} \cdot u$ методом «максимум-минимум» и фазы коэффициента отражения приведены в табл. 3.

![Table 3](image)

<table>
<thead>
<tr>
<th>Источники погрешности</th>
<th>Погрешность измерения</th>
<th>Фазы коэффициента отражения, рад</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K_{ct} \cdot u$, %</td>
<td>$\sigma_{1K} = 0.7(K_{ct} \cdot u-1) \cdot 100$</td>
<td>$\sigma_{1\varphi} = 0.35 \times \frac{(K_{ct} \cdot u-1)(K_{ct} \cdot u_{(изм.)}+1)}{(K_{ct} \cdot u_{(изм.)}-1)}$</td>
</tr>
<tr>
<td></td>
<td>$\sigma_{2K} = 0.4 \delta U$</td>
<td>$\sigma_{2\varphi} = 0.01 \frac{K_{ct} \cdot u_{(изм.)}}{K_{ct} \cdot u_{(изм.)}-1} \cdot \delta U$</td>
</tr>
<tr>
<td></td>
<td>$\sigma_{3K} = \frac{\eta}{5} \sqrt{1+K_{ct}^4 \cdot u_{(изм.)}^2}$</td>
<td>$\sigma_{3\varphi} = 0.014 \frac{K_{ct}^2 \cdot u_{(изм.)}}{K_{ct}^2 \cdot u_{(изм.)}-1}$</td>
</tr>
<tr>
<td></td>
<td>$\sigma_{4K} = 5 \frac{\Delta l_{3}}{\lambda_{AB}}$</td>
<td></td>
</tr>
</tbody>
</table>

где $K_{ct} \cdot u_{(изм.)}$ — измеряемый $K_{ct} \cdot u$;

Δl_{3} — погрешность индикатора положения зонда.
Значения σ_{3k} и σ_{A_1} справедливы при квадратичной характеристике детектора линии.

Максимальная погрешность Δ_k в процентах измерения $K_{ct u}$ определяется по формулам (26) и (27):

$$\Delta_k = 1,7 \sigma_{3k},$$

где σ_{3k} — среднеквадратичная погрешность измерения $K_{ct u}$;

$$\sigma_{3k} = \sqrt{\sum_{i=1}^{n} \sigma_{i3k}^2},$$

(27)

где σ_{i3k} — составляющая погрешность при измерении $K_{ct u}$.

Максимальная погрешность Δ_φ измерения фазы коэффициента отражения в градусах определяется по формулам (28) и (29):

$$\Delta_\varphi = 1,7 \cdot \sigma_{\varphi},$$

(28)

где σ_{φ} — среднеквадратичная погрешность измерения фазы коэффициента отражения.

$$\sigma_{\varphi} = \sqrt{\sum_{i=1}^{n} (\sigma_{i\varphi} \cdot 57,3)^2},$$

(29)

где $\sigma_{i\varphi}$ — составляющая погрешность при измерении фазы коэффициента отражения.

В случае использования в качестве индикаторного прибора супергетеродинного измерителя ослаблений значение составляет погрешности σ_{3k} в процентах за счет индикаторного прибора следует определять по формуле:

$$\sigma_{3k}' = 0,115 \Delta N \cdot 0,41 \cdot 100 = 4,7 \Delta N,$$

(30)

где ΔN — погрешность измерения ослабления в децибелях.

При работе с низкочастотными измерителями отношений сигналов в качестве индикаторного прибора погрешность σ_{3k}' за счет индикаторного прибора подсчитывается по формуле:

$$\sigma_{3k}' = 0,2 \delta A,$$

(31)

где δA — погрешность измерения отношений сигналов на частоте модуляции в процентах.

В формуле (26) не учитываются погрешности за счет шунтирующей проводимости зонда $\delta K_{ш}$ и затухания линии $\delta K_{ат}$. При точных измерениях должны быть введены поправки за счет этих составляющих

$$K_{ct u (изм.)} = K_{ct u} (изм.) \left(1 + \frac{\delta K_{ш} \cdot 100}{100} + \frac{\delta K_{ат}}{100}\right),$$

(32)

где $K_{ct u (изм.)}$ — скорректированное значение $K_{ct u}$ измеренной нагрузки.
При измерении фазы погрешность за счет шунтирующей проводимости зонда при компенсации реактивной составляющей его проводимости отсутствует, поэтому в формулу (28) максимальной погрешности по фазе она не входит.

На рис. 13, 14 приведены значения максимальной погрешности измерения $K_{ст} L$ и фазы коэффициента отражения линиями Р1-12А, Р1-13А, Р1-19, Р1-19/1, Р1-20, Р1-21.

1 — при измерении $K_{ст} L$ методом «максимум-минимум» с индикаторным прибором класса $\eta=1,0$;
2 — при измерении $K_{ст} L$ методом замещения с погрешностью $\Delta N=0,1 \, dB$.

Рис. 13 Зависимость максимальной погрешности измерения $K_{ст} L$ от величины измеряемого $K_{ст} L$.

Рис. 14 Зависимость максимальной погрешности измерения фазы коэффициента отражения от $K_{ст} L$ с индикаторным прибором класса $\eta=1,0$.

При расчете использовались предельно допустимые значения параметров линий по пп. 1. 3. 1, 1. 3. 2 без учета остаточных погрешностей, возникающих при исключении $\delta K_{ш}$ и $\delta K_{шат}$.
2. 2. 13. Определение погрешности измерения $K_{ct} \cdot u$ за счет шунтирующей проводимости зонда и затухания СВЧ-мощности в волноводе линии.

Погрешность измерения $K_{ct} \cdot u$ в процентах за счет шунтирующей проводимости зонда определяется по формуле:

$$\delta K_w = -g \cdot K_{отр(н)} \cdot 100,$$

где g — относительная шунтирующая проводимость зонда; $K_{отр(н)}$ — коэффициент отражения измеряемой нагрузки.

Определение шунтирующей проводимости зонда может быть определено по методу, изложенному в п. 2. 5. 5.

Значение погрешности за счет затухания линии в процентах подсчитывается по формуле:

$$\delta K_{зат} = 0,1 \cdot \frac{L}{L} \cdot \left(\frac{K_{ct} \cdot u(l)}{K_{ct} \cdot u} \right) a_{изм} \cdot 100,$$

где $a_{изм}$ — измеренное затухание линии; $K_{ct} \cdot u(l)$ — измеренный $K_{ct} \cdot u$ измеряемой нагрузки; L — длина волновода линии; l — расстояние от фланца линии до зонда в точке измерения.

Затухание линии на измеряемой частоте может быть определено по методу, изложенному в п. 2. 2. 14.

Поправка за счет δK_w и $\delta K_{зат}$ вводится по формуле (32).

Примечание. Учет погрешности за счет затухания проводится только для линий Р1-12А, Р1-13А.

2. 2. 14. Определение затухания измерительной линии.

Затухание измерительных линий Р1-12А, Р1-13А определяется методом «короткого замыкания».

Измеряемая линия с одной стороны подсоединяется к вспомогательной линии, которая через развязывающее устройство подсоединяется к генератору, а с другой стороны — к короткозамкнутой нагрузке с переменной фазой (СРВ). Зонд измеряемой линии не должен потреблять энергию, т. е. должен быть выведен из волновода линии («0» на отсчетном механизме погружения зонда).

С помощью вспомогательной линии определяется $K_{ct} \cdot u(н)$, короткозамыкаемой нагрузки методом удвоенного минимума, описанного в п. 2. 2. 5.

Вычисление $K_{ct} \cdot u$ проводится по формуле (9).

Затем $K_{ct} \cdot u$ короткозамыкаемой нагрузки измеряется вновь, но уже без проверяемой линии в тракте.

Затухание линии a в децибелах определяется по формуле (25).
2. 3. ПРОФИЛАКТИЧЕСКИЕ РАБОТЫ

Для увеличения срока службы прибора и обеспечения его работоспособности необходимы периодический осмотр линии и проведение контрольно-профилактических работ.

После 6 месяцев работы с измерительной линией, а также после длительного хранения ее на складе (свыше 12 месяцев) проводятся следующие работы:

а) внешний осмотр лакокрасочных и гальванических покрытий;

б) проверка крепления органов управления и плавности их действия;

в) снять крышку (5, рис. 3) линии, для чего отвернуть три винта, находящиеся в нижней части корпуса линии, и при наличии пыли и грязи внутри корпуса, на деталях каретки и на волноводе удалить пыль и грязь, протирая плоскость чистой салфеткой и спиртом;

г) удалить пыль из волновода, протирая чистой салфеткой и спиртом, при этом зонд должен быть выведен из волновода;

д) трущиеся поверхности деталей 3, 7 и ось ручки 14 (рис. 3) промыть бензином и смазать маслом МВП ГОСТ 1805-51.

2. 4. УКАЗАНИЯ ПО РЕМОНТУ

2. 4. 1. Смена детектора.

При смене детектора типа Д607-Д608А на однотипные необходимо снять со старого детектора удлинительный (11, рис. 4) контакт и поставить его на новый детектор.

Заряд статического электричества может вывести детектор из строя. Поэтому при установке детектора на место следует сначала свободной рукой коснуться корпуса линии.

2. 4. 2. Порядок разборки прибора.

Для доступа внутрь прибора необходимо:

а) снять линию с подъемного механизма, отвернув 4 винта (18), рис. 3, крепящих корпус линии к подъемному механизму;

б) снять визир (15), рис. 3, отвернув крепящий его винт;

в) снять детектородержатель (17), рис. 3;

г) отвернуть 3 незапломбированных винта (19), рис. 3, головки которых выходят в основание корпуса линии, и снять крышку (5), рис. 3.
Сборку линии производить в следующей последовательности:

а) установить крышку (5), рис. 3, и закрепить ее винтами (19), рис. 3;

б) установить детектородержатель (17), рис. 3;

в) установить визир (15, рис. 3) и закрепить его винтом, проследив при этом, чтобы риск визира была совмещена с нулевой риской линейки при пулевом положении отсчетного лимба, расположенного на правой боковой поверхности корпуса;

г) установить линию на подъемный механизм и закрепить четырьмя винтами (18, рис. 3).

2. 4. 3. Замена противопылевой шторки и зондовой головки.

При необходимости замены зондовой головки (6, рис. 2) следует предварительно поднять зонд в тело головки, отвернуть 4 винта (16, рис. 3), крепящих ее к каретке (4, рис. 3), и снять зондовую головку. Устанавливая зондовую головку, следует обратить внимание на то, чтобы поглотительное кольцо, находящееся в понижении верхней стенки волновода, было наложено на экран зондовой головки и находилось между фторопластовой перемещающейся лентой и волноводом.

При перемещении каретки вдоль волновода экран зондовой головки должен перемещаться в щели строго по середине с обязательным наличием одинаковых зазоров с обеих сторон между стенками щели и экраном.

Для замены поврежденной перемещающейся ленты (1, рис. 15) (выполняющей роль противопылевой шторки) необходимо снять линию с механизма подъемного (10, рис. 3), снять крышку (5, рис. 3), снять зондовую головку (6, рис. 3), затем отвернуть гайки шпилек (2, рис. 15), на которых вращаются барабаны (3, рис. 15), и вынуть шпильки (2, рис. 15). Отвернуть винты (4, рис. 15), крепящие перемещающуюся ленту (1, рис. 15) к каретке (5, рис. 15) линии, и снять ленту.

Рис 15 Продольный разрез корпуса линии